
www.manaraa.com

ADESSO
SCIENTIFIC SOFTWARE DEVELOPMENT ENVIRONMENT

Rubens C. Machado1, Roberto de A. Lotufo2, Alexandre G. Silva2 and André V. Saúde1,2

1Renato Archer Research Center, P.O.Box 6162, 13089-120, Campinas, SP, Brazil
rubens.machado@cenpra.gov.br

2DCA–FEEC, University of Campinas, P.O.Box 6101, 13083-970, Campinas, SP, Brazil
{alexgs,lotufo,andrevit}@dca.fee.unicamp.br

ABSTRACT

This paper presents the Adesso, a computational en-
vironment for the development of scientific software.
The Adesso environment leverages the reusable soft-
ware component programming model to support the
development and integration of components to sev-
eral scientific programming platforms. The Adesso
system is based on an XML component database and
a set of XML document transformation tools for the
automatic generation of component code, documen-
tation and packaging. An authoring tool, built with
the help of the Adesso transformation system itself, is
provided to assist the user in the creation of compo-
nents. The Adesso system has been used for the de-
velopment of several image processing toolboxes and
applications. Some of them are presented briefly in
this paper.

1. INTRODUCTION

Research projects in areas like image processing,
computer vision, pattern recognition and others have
its main concern on the validation of new algorithms
and methods. To achieve this goal, the researcher usu-
ally develop computer programs. These programs,
while not being the main result of the research project,
are fundamental pieces and, many times, constitute
the basis for the developing of new, innovative prod-
ucts.

A successful scientific software application in-
volves, besides high quality algorithms, a robust and
up-to-date implementation conforming the current
practices of the software field. In the current state-
of-the-art, these are very demanding: sophisticated
user interfaces, integration among applications, high
quality user documentation and so on. In addition,
the fast evolution of the modern computer platforms
poses another problem to the maintenance of these ap-
plications.

All these factors lead to software models where
the reutilization of programs has a fundamental role.

This work was supported by FAPESP, Brazil.

One of such models, the component/solution model,
has been successfully applied for years since the ad-
vent of the Visual Basiccontrols. In this model, soft-
ware components are created and packaged indepen-
dently of the integration platform where, in a subse-
quent step, they are glued together to form an appli-
cation. Typically, the integration platform takes care
of the tasks related to the integration with the under-
lying operating system, so that the component devel-
oper can be concerned mainly with the algorithms and
methods implemented by the component.

Today, there are a number of suchintegration
platforms suitable for scientific software develop-
ment. Scripting languages play an important role
here. The MATLAB scripting language has become
a standard for scientific programming; open-source
scripting languages like Perl, Tcl and Python are other
actors in this play. Scripting languages like these
are known to be important productivity tools, often
speeding development by a factor of ten in relation
to systems languages like C/C++ or Java [1]. More-
over, those languages can be easily extended with pro-
grams developed in high performance languages like
C and C++, useful when dealing with problems in im-
age processing and related areas.

The system presented in this paper provides tools
to support scientific software development in this
framework of extensible scripting languages, empha-
sizing the two-language approach for the scientific
software development. To this end, our system pro-
vides a set of tools to automate the process of creat-
ing extension packages in languages C and C++ and
integrating them to the target scripting language.

Another core issue in scientific software develop-
ment is the documentation. Reutilization of compo-
nents is closely tied to the quality of the component
documentation. Many times, the documentation ef-
forts in scientific software development consumes the
bulk of the project cost. Initiatives like theliterate
programming[2] tries to couple the creation of com-
puter source code and the associated documentation,
stating that the programmer main task is to explain
his code to other programmers, not only to comput-

www.manaraa.com

ers. The programmer’s main deliverable is adocu-
mentfrom where code can be generated.

As we will see in the course of this work, our sys-
tem tries to incorporate the main ideas of the literate
programming model, although changing the empha-
sis to the documenting of thecomponent interfaces
instead of documenting the component implementa-
tion.

Software deployment is another source of troubles
to the developer. Packaging, installation and mainte-
nance of software systems are important issues when
deploying applications. Our system address these
common needs in an integrated fashion, considering
them from the beginning of the development process.

This paper is organized as follows. The next sec-
tion presents an overview of the Adesso system and
the rationale for the selection of its main base tech-
nologies. The authoring tools and the underlying in-
formation model is the matter of the following sec-
tion. Section 4 deals with the Adesso transformation
processor and its stylesheets. Finally, some applica-
tions developed with the Adesso are briefly described
and we summarize our plans for the near future and
draw some final comments.

2. OVERVIEW

The Adesso,Scientific Software Development Envi-
ronment, [3] is our response to the issues outlined in
the previous section. It is a support system for the
development of scientific software components. The
Adesso underlying model embodies concepts like the
component/application paradigm and the emphasis on
documentation and testing. Like literate program-
ming, it enforces the joining of code and documenta-
tion, but, unlike literate programming, the documen-
tation is aimed at the component interface instead of
the implementation.

The Adesso architecture is based on some main
concerns: (a) the component information is repre-
sented in a centralized and structured way, (b)code
generatorsare applied to build releases of the soft-
ware and (c)authoring toolsare used for the creation
of components.

The Adesso user deals with the creation of com-
ponent sets, calledtoolboxes. A toolbox is made of
all the information needed for the building of aprod-
uct. A product comprises the executable code and
the documentation of thetoolboxfor one integration
platformrunning on acomputational platform. These
productsare built through transformation tools called
code generators. As an example, an "Image Process-
ing Toolbox" may be used to create a product for use
with MATLAB on Windows platforms; the same tool-
box may be the base for a Python/Linux product. The
development process is illustrated in Figure 1.

Our implementation of the Adesso environment is
heavily based on theExtensible Markup Language,

Toolbox CreationToolbox Creation

ToolboxToolbox

Code GenerationCode Generation

Source Code and
Documentation

Source Code and
Documentation

Building Info
(Makefiles)

Building Info
()Makefiles

BuildingBuilding

Installation InfoInstallation Info
Binaries and

Documentation
Binaries and

Documentation

InstallationInstallation

Product Binary ReleaseProduct Binary Release

Product Source ReleaseProduct Source Release

Fig. 1. Toolbox Development Process

XML, [4] and its related standards. XML is derived
from the Standard Generalized Markup Language,
SGML. SGML has long been used as a means of doc-
ument management in large corporations. XML is
meant to be a simpler language aiming widespread
use on Internet systems.

Some XML features were crucial for our choice:
(a) XML is application-neutral and cross-platform. It
is a human-readable plain text language and there are
an increasing number of XML parsers and other tools
available for nearly all computer platforms. (b) XML
documents are structured and the markup is domain-
specific. This enables us to define the data model to
be used by the toolboxes and allows the validation
of a specific instance of the model. (c) The transfor-
mation model stated by the XSLT standard (Extensi-
ble Stylesheet Language, a companion XML standard
[5]) is specially useful for our purposes – automatic
code and document generation.

Having chosen these technologies to make up the
foundation of our system, we defined the architecture
shown in Figure 2 for the Adesso.

The Adesso provides tools for the creation oftool-
boxes, transformation stylesheets and derivedprod-
ucts. The user makes use of authoring tools to cre-
ate a toolbox in conformance with the data model
established by the Adesso. For each supported inte-
gration platform (scripting language), the system sup-
pliesstylesheetsto drive the transformation machine,
style processor, in order to create a product source

www.manaraa.com

Authoring
Tools

Stylesheets
(XML)

Style
Processor

Toolboxes
(XML)

Source Code,
Makefiles and Documentation

Adesso

User

Building
Platform

Binary Release
and Documentation

Linux
Solaris
Windows

Fig. 2. Adesso Architecture

release. This source release is independent of com-
putational platforms (operating systems). Once the
source release is generated, a binary (executable) re-
lease can be built on several computational platforms.
This stage makes use of common tools like compilers
and linkers available in the target platform, in addi-
tion to the Adesso provided cross-platform building
tool (a kind ofmake).

The Adesso system was developed with the
Tcl/Tk [6] scripting language and its extension for
XML processingtDOM [7].

In the next sections, we will describe the available
Adesso tools for the main stages in toolbox develop-
ment: toolbox authoring and code/document genera-
tion, building, packaging and installing.

3. TOOLBOX AUTHORING

Using the authoring tools provided by the Adesso sys-
tem, the author writes the source code and documen-
tation for each component of the toolbox, following
the toolbox data model, presented next. The whole
information entered in this stage is independent of the
integration and computational platforms.

Since the user is editing an XML file, he can
choose among the several generic XML editors cur-
rently available. However, a specialized editor is a
better choice as it can enforce the correctness of the
information entered by the user and optimize some
usual procedures. A specialized XML editor is one
that has embodied the underlying XML data model
and is capable of validating the XML document be-
ing created.

To define the structure and data types of an
XML document, there is a standard namedXML
Schema[8]. This standard describes a language,
based on the XML syntax, to define the structural
relationships among the elements of an XML docu-
ment and the data types represented in document in-
stances. TheXML Schemadocument enables the val-
idation of instances of the target document, much like

the DTD,Document Type Definition, described in the
XML standard, does.

Observing that the schema is itself an XML doc-
ument, we are able to use the Adesso transformation
tools to generate useful code to create the graphical
user interface elements for a toolbox editor. Thetool-
box XML Schemadocument can, thus, drive the cre-
ation of specialized editors for the Adesso. We have
explored this framework in a project calledXML Con-
textual Editor.

The XML Contextual Editorproject is aimed at
creating a framework for the generation of XML edi-
tors based on transformations of an XML Schema cor-
respondent to the targeted XML documents. In other
words, it creates XML editors to edit a determined
XML document structure.

An XML Schema consists, basically, of datatype
and structure definitions for validating a class of XML
documents. Every datatype definition is derived, by
restriction or extension, from a primitive datatype
or from another derived datatype. Although inher-
itance and other object-oriented modeling concepts
are not directly used in these derivation mechanisms,
the specification allows direct mapping of an XML
Schema to such a model.

The XML Contextual Editorproject utilizes the
transformation infra-structure of the Adesso to au-
tomatically generate implementations of the XML
Schema object-oriented model. For each datatype
implementation, a small graphical component is also
generated with specific properties. The whole set
of these graphical components, together with the de-
fined structures, makes up a high-level Graphical User
Interface (GUI), assuring easy edition of only valid
XML instance documents. A screenshot of an auto-
matically generated GUI for toolbox editing is shown
in Figure 3. The editor was implemented in the Java
language.

Fig. 3. Adesso Contextual Editor

The results of this project are currently being used
to create a distributed authoring tool intended for the
AdessoWeb project (described in the following).

www.manaraa.com

3.1. Toolbox Data Model

The structure of a toolbox is modeled by an XML
Schema document. Toolboxes are component collec-
tions. There are a variety of component types like, for
example, functions written in the MATLAB language,
functions in C, demonstration scripts, etc. The tool-
box XML files are intended to hold (or point to) all
the code and documentation about these components.
Next is a brief presentation of the XML elements of a
toolbox.

Toolbox identification: toolbox name and version,
CVS strings.

Global documentation: generic documents,
README files, installation instructions,
bibliography etc.

Component classifiers: tags used to group compo-
nents for documentation, organization in direc-
tories and releases.

Components: this constitutes the core of the tool-
box. There is a variety of component types,
like MATLAB functions, C functions, demon-
strations etc. Each component contains the fol-
lowing element groups:

Identification: name of the function.

Documentation: documentation about the
function.

Prototype definition: definition of the func-
tion prototype (signature).

Implementation: this element contains or
points to the function source code.

Dependencies:enumerates possible depen-
dencies on other toolbox components.

Testsuite: code to exercise the component fea-
tures in order to validate its behavior.

External dependencies:enumerate toolbox depen-
dencies on external libraries and other kinds of
files.

Toolbox-specific stylesheets:these elements allow
the customization of the existing stylesheets to
take into account toolbox peculiarities.

4. CODE GENERATION

In the code generation stage, the transformation tools
are used to build asource distributionfor a chosen in-
tegration platform. This distribution contains all the
sources and documentation of the components, along
with generated interfaces for use with the integration
platform and building instructions for the creation of
binary distributions(Makefiles). The source distribu-
tion is independent of the computational platform.

The process of transforming the toolbox data into
a source distribution is driven by a set ofstylesheets
and implemented by astyle processoras shown in
Figure 4. Each supported integration platform has a
corresponding set of stylesheets.

Toolbox Data
(XML)

Stylesheets
(XML)

Style
Processor

Output
Documents

Fig. 4. Adesso Transformation Model

The transformation model depicted in Figure 4 is
basically the same used by theXSLT. In fact, it was
inspired on that. The stylesheets used as input by the
Adesso style processor are written in a reduced lan-
guage that mix the structure of the XSLT stylesheets
with fragments of Tcl code. The resulting transform
specification is quite flexible, allowing kinds of pro-
cessing not possible, at least in the usual way, in the
more formal language of the XSLT processor. The
stylesheets use XML for its syntax, taking advantage
of the underlying XML parser. To avoid the direct
writing of XML, we have developed a simple prepro-
cessor based on indentation (an idea borrowed from
the Python language, where the indentation level of
the statements is used to group them in code blocks).
The following is a very simple stylesheet to show the
language appearance:

stylesheet toolbox_index.html:

template AdToolbox:
<html><body>

<h1>
Component Index for Toolbox
[sty:value @name]

</h1>
<dl>

[sty:apply AdFunctions/AdFunction]
</dl>

</body></html>

template AdFunction:
<dt>[sty:value @name]</dt>
<dd>

[sty:value Short]
(implemented in [sty:value Source/@lang])

</dd>

The stylesheet creates an HTML page containing
an index of the toolbox components. The page ti-
tle indicates the name of the toolbox, obtained from
the attributenameof the XML top element (AdTool-
box) via the processor commandsty:value . The
commandsty:apply causes the firing of the tem-
plates that match the elements of typeAdFunction,
where lives the function data. For each toolbox func-
tion the stylesheet emits one HTML definition list
item formed by the name of the function, its one-line

www.manaraa.com

description (XML elementShort) and a note about
the component implementation language(s) (attribute
Source/@lang).

We have implemented several sets of stylesheets
for supporting the code and documentation for the fol-
lowing integration platforms: C libraries, MATLAB,
Tcl/Tk and Python. For each platform we are able to
create the core toolbox library, the interfaces for us-
ing the code from the platform, demonstration scripts,
building and installation rules and documentation in
HTML, online help systems and PDF.

An interesting feature of the documentation gen-
eration stylesheets is the generation of figures from
scripts. The figures are specified through the scripts
that will create them. This feature enables theRepro-
ducible Research[9] approach to scientific publica-
tions, where all results are presented along with the
corresponding software piece.

To help in the generation ofbinary distributions
for different computational platform, the Adesso sys-
tem provides a platform-independent building tool
that interprets the building rules created in the pre-
vious stage and launches the appropriate tools in the
target platform. The target platform is supposed to
provide tools like compilers and linkers.

5. APPLICATIONS

5.1. SDC Morphology Toolbox for MATLAB

As stated in its homepage1, the SDC Morphology
Toolbox for MATLAB is a powerful collection of
latest state-of-the-art gray-scale morphological tools
that can be applied to image segmentation, non-linear
filtering, pattern recognition and image analysis.

The roots of the Adesso system are closely related
to the development of the SDC Morphology Toolbox.
This was the first application built with the help of
the Adesso. The project was fairly large and the data
model and transformation styles of the Adesso was
largely influenced by the structure of this morphology
toolbox.

The SDC Morphology Toolbox web site illus-
trates much of the capabilities of the Adesso system,
as it was almost fully created with our system.

5.2. Python Image Processing Toolboxes

Recently, thePythonlanguage [10] is having a great
growth. It is a modern scripting language, with re-
fined concepts of object orientation and modulariza-
tion. TheNumericpackage [11] is an extension that
brings to the Python world strong support for multi-
dimensional matrix computation. Python, associated
with the Numerical package, is a generic language,
extremely portable and efficient enough for image
processing tasks. Python has the flexibility of Perl,

1http://www.mmorph.com

associated with the numerical power and ease of use
of MATLAB, but is available as an open source en-
vironment. The source code is generally small when
compared to compiled languages by several reasons:
high-level data types and operations, no type declara-
tions (dynamic typing), automatic memory manage-
ment, and command blocks marked by indentation. In
C/C++, equivalent data structures and functionalities
with the same optimization would cost considerable
more programming time. There is also a great native
set of libraries implemented in C/C++ (built-in) that
practically discard the process of compilation / cor-
rection / re-compilation (except for API extensions of
the language). These characteristics generate a high
productivity gain.

The Adesso has full support to the creation of ex-
tensions to the Python language, automating the de-
velopment of C, C++ and pure Python modules. Sup-
ported by the Adesso, we have developed an image
processing toolbox for the Python language. This im-
age processing toolbox [12] is intended to be used
as a practical resource in image processing courses.
The Python toolbox is compatible to the equivalent
MATLAB image processing toolbox being used and
developed.

The image processing toolbox is calledia636 as
a reference to the code of the computer vision gradu-
ate course taught at the Faculty of Electrical and Com-
puter Engineering, UNICAMP. The last version of the
toolbox can be seen at the ia636 homepage2.

5.3. ProntoVideo

ProntoVideo [13] is an interactive tool for object
video segmentation (video masking). It allows users
to select, extract (delineate), and track objects from
arbitrary backgrounds of image sequences (digital
video).

ProntoVideo was developed with the language
Tcl/Tk and supported by some image processing ex-
tensions written in C and developed in the Adesso en-
vironment.

5.4. AdessoWeb

The ubiquity of the World Wide Web in these days
increasingly stress the excellence of the component
based software – the Internet is a huge component
integration environment. As the Adesso is heavily
based on a Web core technology, the XML, it is par-
ticularly suited for operation via the Internet. On
the other side, as the Adesso is used by a growing
group of developers and makes use of many utility
tools from different sources, the difficulties related to
the installation and maintenance are becoming signif-
icant.

2http://marahu.dca.fee.unicamp.br/course/ia636.html

www.manaraa.com

The AdessoWeb project is aimed at operating the
Adesso in a distributed environment and publishing
the interfaces through the WWW. This framework
will avoid the installation problems and facilitate the
maintenance. The AdessoWeb is based ondistributed
objectscooperating on a CORBA bus and operated
primarily through World Wide Web browsers. Physi-
cally, the system is a conglomerate of computers con-
nected by a local area network that provides services
through the Internet. Figure 5 shows the main compo-
nents of the AdessoWeb. The AdessoWeb is currently
under development.

Access
Control

Session
Control

Adesso

ORB

HTML Pages

Web
Server

Kernel

Stylesheets Toolboxes
AdessoWeb

Server

Database

Compilation
Park

Linux

Windows

Solaris

LAN

Clients

BrowserBrowser

Application

World Wide Web

Administration

Fig. 5. AdessoWeb Organization

6. CONCLUSION

This paper presented the Adesso system for scientific
software development and outlined some application
developed with its help. After a couple of years us-
ing the Adesso, we can testify the benefits of its de-
velopment process, mainly in the software reusability,
documentation and maintenance. For the near future,
we plan to extend the Adesso with distributed systems
capabilities, intending its use through the World Wide
Web. Also, the utilization of the Python language for
image processing systems will deserve our attention
in the next months.

7. REFERENCES

[1] J. K. Ousterhout, “Scripting: Higher level pro-
gramming for the 21st century,”IEEE Com-
puter, 1998.

[2] D. E. Knuth, “Literate Programming,” The
Computer Journal, vol. 27, May 1984, Issue 2.

[3] R. C. Machado, “Adesso - Ambiente Para De-
senvolvimento de Software Científico,” M.S.
thesis, Electrical Engineering Faculty - UNI-
CAMP, Brazil, jun 2002.

[4] W3C Recommendation 6-Oct-2000,eXtensible
Markup Language (XML) 1.0 (Second Edition),
http://www.w3.org/TR/REC-xml-20001006.

[5] W3C Recommendation 16-Nov-99, XSL
Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt.

[6] B. B. Welch,Practical Programming in Tcl and
Tk, Prentice Hall PTR, 3rd edition, 1999.

[7] J. Loewer, tDOM - A fast XML/DOM/XPath
package for Tcl writen in C,
http://sdf.lonestar.org/ loewerj/tdom.cgi.

[8] W3C Recommendation, 2 May
2001, XML Schema Part 0: Primer,
http://www.w3.org/XML/Schema.

[9] Jonathan B. Buckheit and David L.
Donoho, “Wavelab and Repro-
ducible Research,” http://www-
stat.stanford.edu/ donoho/Reports/1995/wavelab.pdf.

[10] M. Lutz and D. Ascher, Learning Python,
O’Reilly and Associates, April 1998.

[11] D. Ascher, P. F. Dubois, K. Hinsen,
J. Hugunin, and T. Oliphant, “Nu-
merical Python,” September 2001,
http://numpy.sourceforge.net/numdoc/numdoc.pdf.

[12] A. G. Silva, R. A. Lotufo, and R. C. Machado,
“Toolbox of Image Processing for Numerical
Python,”Sibgrapi, October 2001, Florianópolis,
Brazil, IEEE.

[13] R. Lotufo, R. Machado, F. Flores, A. Falcão,
R. Koo, G. Mazzela, and R. Costa, “Prontovideo
– an image sequence segmentation tool applied
to video edition,”Sibgrapi, October 2001, Flo-
rianópolis, Brazil, IEEE.

	header: JCS&T Vol. 3 No. 1 April 2003
	footer: - 1 -
	footer2: - 2 -
	footer3: - 3 -
	footer4: - 4 -
	footer5: - 5 -
	footer6: - 6 -

